### **CELL INJURY**

### Dr Ahmed Roshdi, PhD

Prof of Pathology, Faculty of Medicine, Sohag University

18th February 2023

### Introduction to pathology

- By end of this session; you should be able to:
  - Define cell injury and identify its etiology
  - Identify main types of cell injury with examples.
  - Mention etiology, mechanism and describe morphology and fate of fatty change of liver.
  - Identify types and pathological changes of necrosis
  - Define apoptosis and identify its types
  - Describe differences between necrosis and apoptosis

- **Definition:** Cell injury is damage of the cells due to exposure to insult (injurious agents)
- Causes:
  - 1. <u>Hypoxia</u>: the main cause of cell injury is decrease oxygen supply to the cells.
  - 2. <u>Infectious agents</u>: Bacteria, viruses, rickettsia, fungi and parasites.
  - 3.Physical agents: Trauma, heat, cold and radiation.
    4.Chemical agents: Acids, alkalies and poisons
    5.Immunologic reactions as allergy
    6.Nutritional deficiencies.
    7. Genetic defects

**Effect of cell injury:** 

Based on **type of injured cells**, **nature of injurious agents** and **severity of injurious agents**; cell injury is classified **into two main types**:



### Reversible (Degeneration)

*Induced by:* mild injury or injury of short duration with no damage of nucleus. *Affects:* commonly active cells with high rate of metabolism. *Examples:* 

 Cell swelling (cloudy and hydropic swelling).
 Fatty change.

### Irreversible (Cell death)

Induced by: severe injury or injury of long duration results in damage of nucleus Affects: commonly active cells with high rate of metabolism. Examples: 1. Necrosis 2. Apoptosis



Cell swelling (cloudy and hydropic swelling)
 Fatty change

### **Fatty change:**

- *Definition:* intracellular accumulation of neutral fat within parenchymal cells
- *Sites*: Mainly affect <u>liver</u> and less commonly involve <u>cardiac muscle</u> and <u>kidney</u>.

- Etiology: Fatty change of liver occurs through two main pathways:
  - 1. Excess fat transport to liver that exceed capacity of the liver to metabolise fat.
  - 2. Liver cell damage; so hepatocytes can`t metabolise fat

### **Fatty change:**

- Etiology:
  - 1. Excess fat transport to liver: occurs in cases of obesity, diabetes mellitus and congenital hyperlipidaemia
  - 2. Liver cell damage; so hepatocytes can't metabolise fat: occurs in
    - Chronic hepatitis (common in Egypt)
    - Alcoholic liver disease (most common in Western societies)
    - Drug-induced liver cell injury: long standing administration of methotrexate, steroids and other drugs

### **Fatty change:**

- Morphology: *Grossly*: The liver has
  - Larger size
  - Rounded borders
  - Soft consistency.
  - Pulging cut surface
  - Pale-yellow color.



### **Fatty change:**

- Morphology: Microscopically:
  - A characteristic feature is presence of numerous lipid vacuoles in the cytoplasm
  - Firstly; the vacuoles are small (micro-vesicular).
  - With disease progression, the vacuoles become larger pushing nucleus to periphery of the cells (macro-vesicular).
- Fate: Usually regress after removal of causative factor but may lead chronic hepatitis in long standing cases

### **Fatty change:**

#### - Fatty liver:

- Morphology: Microscopically:



Micro-vesicular fat vacuoles N



Macro-vesicular fat vacuoles



### Necrosis

- Definition
- Main features
- Morphology (gross and microscopic changes)
- Types and examples

#### Necrosis

□*Definition:* Local death of large number of adjacent cells or tissue within living body.

#### □*Main pathogenic features:*

- Loss of membrane integrity
- Damage of the nucleus
- Destruction of organelles especially lysosomes
- Release of lysosomal enzymes from injured cells.
- Local inflammation around necrosis.

### Necrosis

□*Morphology*:

#### **Grossly:**

- Necrotic tissue appears opaque and pale white or yellow in color.
- The surrounding tissue appears red due to inflammatory hyperemia.



#### Necrosis

**Morphology:** 

Microscopic: Cytoplasmic and nuclear changes

**Cytoplasmic changes** 

- Cell swelling
- Loss of cell membrane

#### Nuclear changes

- **Pyknosis**: The nucleus shrinks and has dense and dark stain.
- Karyorrhxis: The nucleus breaks down into multiple small fragments.
- Karyolysis: The nucleus dissolves.

### Necrosis

*Morphology*:

#### Microscopic: Cytoplasmic and nuclear changes



### Necrosis

□Types of necrosis:

- 1. Coagulative necrosis
- 2. Liquifactive necrosis
- 3. Caseation necrosis
- 4. Fat necrosis

#### Necrosis

1. Coagulative necrosis:

#### Main features:

- A type of necrosis in which necrotic area appear firm and opaque white.
- It is the most common type of necrosis
- Commonly affected organs are: heart, kidney and spleen
- Caused mainly by sudden cut of blood supply

### Necrosis

1. Coagulative necrosis:

#### Gross

• Early stage: necrotic area is pale, opaque, and slightly swollen.

• Late stage; the affected area becomes yellowish, soft, and shrunken.



#### Necrosis

2. Liquifactive necrosis:

#### Main features:

- A type of necrosis in which the necrotic area liquefies rapidly.
- It is a common type of necrosis
- Commonly affected organs are:
  - a. <u>Infarction of brain and spinal cord</u>: liquefaction is due to high fluid contents.
  - b. Pyogenic abscess
  - c. Amebic abscess

#### Necrosis

3. Caseation necrosis:

#### Main features:

- A type of necrosis in which the necrotic area showed partial liquefaction
- The necrotic tissue has a caseation or cheese-like appearance.
- It is a common type of necrosis
- Commonly occurs in tuberculosis

### Necrosis

3. Caseation necrosis:

#### Gross

• Necrotic tissue appears dry, pale yellow and resembles creamy cheese or casein.



### Necrosis

4. Fat necrosis:

#### **Two main types:**

• *Enzymatic fat necrosis:* occurs in pancreatitis. The pancreatic enzyme lipase escapes from ruptured pancreatic ducts and leads to liquefaction of omental and mesenteric fat.

• *Traumatic fat necrosis:* occurs as a result of trauma to the fatty tissue of breast and subcutaneous fat.

### Necrosis

**Generate of necrosis** 

#### 1. Small area of necrosis:

• The necrotic tissue is removed by macrophages.

#### 2. Large areas of necrosis

- The necrotic tissue is surrounded by a fibrous capsule.
- They may show dystrophic calcification later on.

### Apoptosis

- Definition
- Morphology (gross and microscopic changes)
- Examples
- Apoptosis versus necrosis

### Apoptosis

□*Definition:* A programmed cell death affecting <u>one cell</u> or <u>small group</u> <u>of cells</u>.

Morphology

**Gross** NO change

#### **Microscopic**

- Shrinkage of the cell.
- Loss of nuclear membrane
- Fragmentation of cell to form apoptotic bodies.
- Phagocytosis of apoptotic bodies by macrophages
- NO inflammation in surrounding tissues.



### Apoptosis

**D**Examples of apoptosis.

#### <u>NOTE</u>

Apoptosis:

- IS an energy-dependent programmed cell death
- FOR removal of unwanted individual cells.
- SO occurs in both physiological and pathological conditions.

### Apoptosis

#### **D**Examples of apoptosis.

#### Physiological apoptosis (apoptosis in normal tissue)

- In normal cell turnover: new cells replace aging (senescent) cells.
- Programmed cell destruction during embryonic development as shrinkage of thymus gland in adult life

#### • Endocrine dependent apoptosis:

- a. Monthly shedding of endometrium during the menstrual cycle. b.Regression of breast after weaning.
- c.Regression of breast size after menopause.
- d.Regression of size of uterus after menopause.

### Apoptosis

**D**Examples of apoptosis.

Apoptosis in pathological conditions (due to diseases) a. Viral infection: as chronic hepatitis b.Exposure to irradiation (radiation cell injury). c. Drugs: as chemotherapy in cancer treatment d.In degenerative disease: as Alzheimer's disease

|                   | Apoptosis                             | Necrosis                           |
|-------------------|---------------------------------------|------------------------------------|
| • Induction       | <ul> <li>Physiological and</li> </ul> | • Only pathological (Hypoxia,      |
|                   | pathological.                         | toxins & chemical agents)          |
| Cells affected    | Single cell or small group            | • Large group or part of an organ. |
|                   | of cells                              |                                    |
| • Nuclei          | <ul> <li>Condensation and</li> </ul>  | • Pyknosis, karyorrhexis and       |
|                   | fragmentation of                      | karyolysis.                        |
|                   | chromatin.                            |                                    |
| • Cytoplasm       | • Shrinkage of cells.                 | • Cytomegaly (cell swelling).      |
| • Cell membrane   | • Maintained.                         | • Lost                             |
|                   |                                       |                                    |
| • Tissue reaction | • No inflammation.                    | • NO inflammation in surrounding   |
|                   |                                       | tissue.                            |
| • Fate of dead    | • Ingested (phagocytosed)             | • Small lesions: phagocytosed by   |
| cells             | by macrophages.                       | PML and macrophages and large      |

PML and macrophages and large lesions heal by fibrosis

#### **Homework:**

- Mention causes of cell injury.
- Mention etiology of causes of fatty liver.
- Mention types of necrosis.
- Give examples for physiological and pathological apoptosis.
- Compare between apoptosis and necrosis.

